Course name Microbiology

Faculty PharmD

Curriculum

- I. General microbiology
 - 1. Classification of microorganisms
 - 2. Morphology of prokaryotic and eucaryotic cells
 - 3. Microbial metabolism and growth.
 - 4. Microbial genetics
- II. Interaction between microbe and host
 - 1. Principles of infectious disease and epidemiology
 - 2. Microbial mechanisms of pathogenicity
 - 3. Nonspecific and specific defences of the host
 - 4. Introduction to immunology, vaccines, immune serum and immunoglobins

III. Pharmaceutical microbiology

- 1. Sterilisation, disinfection, antisepsis, aseptics
- 2. Antimicrobial drugs.
- 3. Microbiological control of pharmaceuticals, medical materials and their production process
- 4. Preservation of pharmaceutical products
- 5. Hospital infection
- IV. Detailed microbiology
 - 1. Classification and pathogenicity of chosen bacteria
 - 2. Elements of mycology
 - 3. Elements of virology

Course source materials

- 1. Hugo W.B. Russell AD. (Eds).: Pharmaceutical Microbiology, Blackwell Sci., London, 2001
- 2. Tartora G.J., Fanke B. R., Case C. L.: Microbiology: an introduction; Benjamin Cummings; San Francisco, 2001
- 3. Collins C.H.: Lyne P.M., Grange J.M.: Microbiological Methods, Butterworths, London 1989
- 4. Block S.S. (Ed.): Disinfection, Sterilization and Preservation. Lippincott Williams and Wilkins, Philadelphia, 1999
- 5. Benson H.J.: Microbiological Applications, WCB-MeGraw-Hill, Boston 1998
- 6. Ayliffe GA.J., Lowbury E.J.L. (Eds), Control of hospital infection. A practical handbook, Chapman and Hall Med., London 1996
- 7. Wenzel R.P. (Ed) Prevention and Control of Nosocomial Infections, Williams and Wilkins, Baltimore and London 1997

Detailed curriculum

Lectures – 15 hrs

- I. General microbiology
 - 1. Classification of microorganisms
 - Scientific nomenclature
 - The taxonomic hierarchy
 - 2. Morphology of prokaryotic and eucaryotic cells
 - The size, shape and arrangement of bacterial cells
 - The procaryotic cell
 - Bacterial cell structures: slime and capsules, pili, fimbria, cell wall, cytoplasmic membrane, cytoplasm, mezosomes, ribosomes, cytoplasm inclusion bodies, nukleoid, extrachromosomal inheritance factors
 The eukaryotic cell
 - 3. Microbial metabolism and growth
 - Nutritious requirements
 - Environment influence on bacteria development: gaseous phase, oxidation-reduction potential, temperature, desiccation, osmotic pressure, surface tension, hydroxyl ions
 - Bacterial division
 - Generation time
 - Phases of growth
 - 4. Microbial genetics
 - Bacterium genome
 - DNA replication
 - RNA and protein synthesis
 - Mutations
 - Extrachromosomal inheritance: plazmids, genetic translocational elements,

II. Interaction between microbe and host

- 1. Principles of infectious disease and epidemiology
 - Predisposing factors
 - Reservoirs of infection
 - The transmission of infection
 - Infectious disease; characteristics, registration, treatment
 - Introduction to epidemiology, epidemiologic investigation
- 2. Microbial mechanisms of pathogenicity
 - Pathogenic properties of microorganisms: adherence, extracellular factors of pathogenicity, components of the cell wall,
 - Production of enzymes and toxins

- 3. Nonspecific and specific defences of the host
 - Skin and mucous membrane
 - Phagocytosis
 - Inflammatory responses to infectious agents
 - Humoral immunity
 - Cell-mediated immunity
- 4. Introduction to immunology, vaccines, immune serum and immunoglobins
 - Antigens and antibodies
 - Vaccines
 - Vaccination timetable
- III. Pharmaceutical microbiology
 - 1. Sterilisation, disinfection, antisepsis, aseptics
 - Sterilization: sterilization by steam under pressure, dry heat sterilization, radiosterilization, gas sterilization, filtration, other methods of sterilization, sterilization process control
 - Disinfection and antisepsis: factors determining the effectiveness of disinfectants, major chemical groups of disinfectants; hand skin antisepsis, operating surface antysepsis, mucous membrane antisepsis, wound and burn antisepsis
 - Methods of evaluating the activity and effectiveness of disinfectants
 - Aseptics, HEPA filters
 - 2. Antimicrobial drugs
 - A review of chemical groups of antibiotics: penicillin, betalactamase inhibitor combinations, cephalosporins, carbapenems, monobactams, macrolides, tetracyklines, aminoglycosides. glikopeptides, lincosamides, quinolones, sulphonamide, nitroimidazoles, nitrofurane, antituberculotic drugs, antimycotic drugs, antiviral chemotherapeutics
 - Means, extent and mechanisms of activity of antibiotics
 - Mechanisms of bacterial resistance to antibiotics: place of action modification, inactivation of antibiotics (modifying and degrading enzymes), distortion of permeability barriers, omission of a link blocked by an antibiotic
 - Clinical importance of resistance to antibiotics
 - 3. Microbiological control of pharmaceuticals, medical materials and their production process
 - Microbiological quality of pharmaceutical preparations
 - Factory and hospital hygiene and good manufacturing practice (GMP)
 - 4. Microbial spoilage and preservation of pharmaceutical products
 - 5. Hospital infection
 - Criteria of defining and hospital infections definitions
 - Sources, reservoirs and ways of spreading hospital infections

- Etiological factors; microorganisms most frequently causing hospital infections;
- Clinical forms and frequency of occurrence of hospital infections
- Changes in the process of hospital infections: infection profile, resistence phenotypes to antibacterial factors
- Risk factors: dependant on the microorganism, on the patient, connected with procedures and treatment
- Preventive measures and action against hospital infections- the role of the pharmaceutical chemist
- IV. Detailed microbiology
 - 1. Classification and pathogenicity of chosen bacteria
 - Gram-positive cocci: Staphylococcus, Streptococcus, Enterococcus
 - The family Enterobacteriaceae
 - Non-fermentative gram-negative rods: *Pseudomonas, Acinetobacter, Stenotrophomonas, Burkholderia,*)
 - Vibrio
 - Aeromonas
 - Campylobacter, Helicobacter,
 - Francisella, Brucella, Bordetella,
 - Gardnella, Legionella, Haemophilus
 - Gram-positive bacilli: Bacillus, Corynebacterium, Listeria
 - Anaerobic bacteria
 - Treponema, Borrelia, Leptospira
 - Rickettsia, Chlamydia, Mycoplasmas
 - Mycobacteria
 - Spirochetes
 - 2. Elements of mycology
 - Fungi characteristics; cell cytology; reproduction
 - Taxonomy of medically important fungi
 - Fungal diseases: systemic mycoses (systemic mycoses due to primary pathogens, systemic mycoses due to opportunistic pathogens), subcutaneous mycoses, skin mycosis (superficial fungal infections, dermatophytosis)
 - Some pathogenic fungi: Candida albicans, Cryptococcus neoformans, Torulopsis, Pityrosporum, Blastomyces, Coccidiodes immitis, Histoplasma capsulatum, Sporotrichum schoenckii, Geotrichum candidum, Aspergillus, Dermatophytes
 - 3. Elements of virology
 - Classification of DNA and RNA viruses; RNA viruses (Pikornaviridae, Orthomyxoviridae, Paramyxoviridae, RSV, Flaviridae, Togaviridae, Retroviridae and others); DNA viruses (Herpesviridae, Adenoviridae, Poxviridae, Papavaviridae, Parvoviridae); hepatitis viruses

Classes – 75 hrs

I. Microscopic observation of microorganisms Staining bacteria (part I)

- 1. Rules and regulations
- 2. Safety in the microbiological laboratory
- 3. Microscopes
- 4. Microscopic examination of stained cell preparation
- 5. Microscopic examination of living bacterial preparations
- 6. Preparation of bacterial smears
- 7. Morphological stain: simple stain, negative stain

II. Staining bacteria (part II)

- 1. Differential stain
 - Gram stain
 - acid-fast staining Ziehl-Neelsen method
- 2. Staining for visualisation of bacterial cell structures:
 - spore stain Schaeffer-Fulton method
 - capsule stain
 - metachromatic granules Loeffler method
- 3. Preparation of a smear and Gram stain of mixed bacteria

III. Growth of microorganisms: nutritional requirements, influence of environment factors

- 1. The requirements for growth
 - chemical requirements (macro and microelements, oxygen)
 - physical requirements (temperature, pH)
- 2. Culture media
- 3. Biochemical activities of microorganisms
 - carbohydrate fermentation (oxidation fermentation test)
 - tryptophan hydrolysis (indole production)

- urea hydrolysis
- hydrogen sulfide production
- citrate utilization
- 4. Cultural characteristics of microorganisms Nutrient agar plate culture:
 - nutrient agar plate culture colony morphology (size, surface, texture, color, elevation, margin)
 - nutrient broth culture
- 5. Isolation of pure cultures by the streak-plate method

IV. Enumeration of microbial populations

- 1. Enumeration the total number of microbial cells (living and dead bacteria)
- 2. Methods of enumeration living microbial cells viable count
 - pour plate method
 - surface spread method
 - membrane filter method
 - most probable number (MPN)
- 3. Indirect viable counts rapid methods
- 4. Quantitation of microorganisms in urine specimen the application of measuring bacterial population in clinical microbiology
 - calibrated loop method
 - dipslide method
- 5. Expression of results according to the European Standard ISO 7218

V. Sterilization , disinfection, antisepsis

- 1. Sterilization methods
 - steam sterilization (autoclave)
 - dry heat
 - ionizing radiation
 - gas sterilization
 - plasma sterilization
 - filtration
 - chemical sterilization

- 2. Sterilization control
 - physical indicators
 - chemical indicators
 - biological indicators
- 3. Disinfection and antisepsis
 - methods of disinfection
 - evaluation of chemical disinfectants and antiseptics

VI. Antibiotics and antimicrobial susceptibility testing

- 1. Chemistry, mode of action of antimicrobial agents
- 2. The major groups of antimicrobial agents
- 3. In vitro antimicrobial susceptibility testing
 - qualitative susceptibility tests:
 - disk diffusion tests
 - quantitative dilution susceptibility tests :
 - agar dilution MIC tests;
 - macrobroth dilution MIC tests;
 - microbroth dilution MIC tests;
 - tests for bactericidal activity MBC test
 - quantitative diffusion susceptibility tests E-test
- 4. Automated antimicrobial susceptibility tests

VII. Detecting of selected mechanisms of bacterial resistance

- 1. The major mechanisms of bacterial resistance to antimicrobial agents
- 2. Tests for detecting of selected mechanisms of bacterial resistance
 - modification of target site: the appearance of a new PBP methicillinresistant staphylococci (MRSA, MRSE, MRCNS)
 - betalactameses: staphylococcal penicillinases, extended spectrum batalactamases of gram-negative roods

VIII. The basics of identification of Gram-positive cocci

- 1. Differentation of Staphylococi from Micrococci
 - catalase test

- oxidation- fermentation test
- furazolidone test
- 2. Tests for differentiation of Staphylococcal species
 - mannitol salt agar: growth, fermentation
 - Baird- Parker agar: growth, pigmentation, precipitation
 - coagulase test
 - haemolysis
 - novobiocin test
- 3. Test for differentiation of Streptococci from Enterococci
 - haemolysis
 - bacitracin test
 - optochin test
 - bile esculin hydrolysis
 - salt tolerance (6,5% NaCI)
- 4. Commercial biochemical identification systems
 - nomautomated system API Staph

IX. The basics of identification of Enterobacteriaceae

- 1. Growth requirements and cultural characteristics
 - media: TSA, Mac Concey's, SS
- 2. Biochemical identyfication
 - catalase production (catalase test)
 - oxidation-fermentation test (Hugh-Leifson medium)
 - reduction of nitrate to nitrite or nitrogen gas (Nitrate medium)
 - oxidase production (oxidase test)
 - H₂S, gas production (Kligler medium)
 - Urease production (urea broth / Christinsen medium)
 - lactose fermentation (10% lactose broth)
 - indole production (indole broth)
 - production of acetoin, methyl red test (Methyl Red-Voges Proskauer medium)
- 3. Commercial biochemical identification systems:
 - nonautomated systems API 20E test
 - semiautomated systems ATB
 - automated systems VITEK

X. The basics of identification of nonfermentative Gram-negative roods and anaerobic bacteria

- 1. Growth requirements and cultural characteristic
 - media: TSA, Mac Conkey agar
- 2. Biochemical identifications
 - catalase test
 - oxidation- fermentation test Hugh- Leifson medium)
 - oxidase test
- 3. Commercial biochemical identification systems
 - nonautometed systems: API 20 NE, API 20 E
- 4. Cultivation of anaerobes
 - media: fluid thioglycollate
 - anaerobic system: Genbag anaer

XI. The basics of identification of fungi

- 1. Characteristics of fungi
- 2. Vegetative structures of fungi
- 3. Reproductive structures of fungi
- 4. General approaches to the isolation and identification of clinically significant fungi
 - specimen collection and transport
 - direct microscopic examination of clinical specimens
 - culture procedures
 - identification of fungi
 - observation of colonial morphology
 - microscopic Examination
 - physiologic tests: germ tube test, chlamydospore production test, assimilation test, fermentation test
 - commercial systems

XII. Microbiological examination of pharmaceutical products

- 1. Microbiological quality of pharmaceutical preparation
- 2. Microbiological examination of sterile products (sterility)

- 3. Microbiological examination of non-sterile products
 - total viable aerobic count (membrane filtration, plate-count methods, most probable number method)
 - test for specified microorganisms (Enterobacteria and certain other gramnegative bacteria, Escherichia coli, Salmonella, Pseudomonas aeruginosa, Staphylococcus aureus)

XIII. Microbiological evaluation of clean rooms and other controlled environment

- 1. Manufacture of sterile and nonsterile products
 - clean areas for the manufacture of sterile products
 - personnel
- 2. Methodology and instrumentation for quantitative estimation of viable airborne microorganisms
 - settling plates method
 - quantitative estimation of the microbial contamination
- 3. Methodology and equipment for sampling of surfaces for quantitative estimation of viable microbial contaminants in controlled environments
 - contact plates or RODAC (Replicate Organism Detection and Counting)
 - the swabbing method
- 4. Quantitative estimation of viable microbial contaminants on hands