

BIOPHYSICS OF CIRCULATORY SYSTEM

By PhD Marek Tuliszka Department of Biophysics Poznań University of Medical Sciences

VISCOSITY- A PROPERTY OF FLUID

VISCOSITY DEPENDS ON TEMPERATURE

WATER	BLOOD						
η_{20} = 0.0010 Pa·s (1.0 cP)							
η ₃₇ = 0.0007 Pa·s	η ₃₇ = 0.0030—0.0040 Pa·s						
(0.007 P = 0.7 cP)	(0.04 P = 4cP)						

Whether turbulent or laminar flow exist in a tube under given conditions may be predicted on the basis of a dimensionless number called the **REYNOLDS NUMBER**. This number represents the ratio of inertial to viscous forces.

Viscosity (apparent viscosity) is relatively high at low rates of shear but approaches an asymptotic value above 100 sec⁻¹.

Viscosity of blood ... depends also on:

The relative, apparent viscosity of whole blood declines markedly in tubes of diameters less than approximately 0.4 mm.

Consequence of the axial accumulation:

- the transit time of erythrocytes through the vascular tree is shorter than that of plasma.

LAWS OF FLUID FLOW

The law of continuity

The Hagen-Poiseuille law and the vascular resistance

 Requirements:

 Iaminar flow

 incompressible fluid

 steady flow (?)

rigid walls (?)

The Bernoulli's Principle

000

incompressible fluid

The Law of Continuity

The volume rate of flow:

$$[Q] = \frac{m^3}{s} \text{ or } \frac{\text{mlitre}}{s} \text{ or } \frac{\text{litre}}{\text{minte}}$$

In the case of laminar flow of an incompressible fluid flowing through rigid tubes the volume rate of flow Q remains constant!

For any given flow the ratio of the velocity past one cross section relative to that past a second section depends only on the inverse ratio of the respective areas.

The Law of Continuity - conclusions

If the cross-sectional area of a tube increases the velocity of flowing liquid decreases and inversely.

 $S_1 \cdot v_1 = S_2 \cdot v_2 = S_3 \cdot v_3$

For the same volume of fluid per second passing from section area S_1 to section area S_2 , which is five times greater, the velocity of flow diminishes to one fifth of its previous value.

Changes in blood velocity in the system of circulation:

	Acto Acto	Large arteries	Medium arteries	Small arteries	Ferminal arteries	Arterioles	Capilaries	Venules	Small veins	Medium veins	Large veins	Vena cava	
ך 4000		1	_		•							-	
3500 -													
3000 -													
2500 -													
2000 -													
1500 -													
1000 -													
500 -													
0	-												

ventricular pressure *MVP*

Q is the analogue of the cardiac output *CO*

$$CO = \frac{\pi r^4}{8\eta l} \cdot (MAP - MVP)$$

The Hagen-Poiseuille Law and the vascular resistance

The fundamental equation of cardiovascular physiology

$$Q = \frac{1}{R_{\rm V}} \cdot \Delta p$$

$$CO = \frac{MAP}{SVR}$$

SVR – Sysytemic Vascular ResistanceCO – cardiac outputMAP – mean arterial pressure

Unit of
$$R_{v}$$
: $\frac{1 \text{ mmHg}}{\frac{1 \text{ mliter}}{\text{min}}}$

Vascular resistance – examples:

Example: <u>Cardiac output</u> (CO) through the circulatory system, when a person is at rest, is <u>100 ml/s</u> (6000 ml/min.)

and

the <u>pressure difference</u> from the systemic arteries to the systemic veins is approximately about <u>100 mmHg</u>. Therefore the resistance of the entire system, *SVR* (the systemic vascular resistance) is approximately equal to:

$$SVR = \frac{100 \text{ mmHg}}{6000 \frac{\text{ml}}{\text{min}}} = 0.017 \frac{\text{mmHg}}{\frac{\text{ml}}{\text{min}}} = 0.017 \frac{\text{mmHg} \cdot \text{min}}{\text{ml}}$$

Example: The brain has flow 750 ml per minute, the pressure difference is 100 mmHg. Determine the cerebrovascular resistance (CVB):

$$R_{\rm CVB} = \frac{100 \text{ mmHg}}{750 \frac{\text{ml}}{\text{minute}}} = 0.13 \frac{\text{mmHg} \cdot \text{min}}{\text{ml}}$$

Example: The lungs have flow 100 ml/s, mean pulmonary arterial pressure is 16 mmHg and mean left atrial pressure is 2 mmHg, thus:

$$R_{\text{lungs}} = \frac{16 \text{ mmHg} - 2 \text{ mmHg}}{6000 \frac{\text{ml}}{\text{minute}}} = 0.0023 \frac{\text{mmHg} \cdot \text{min}}{\text{ml}}$$

NOTE:

If the difference of pressure at the end terminals of a system is smaller, whereas the rate of flow is unchanged the vascular resistance shown by the system is :

$$\boldsymbol{Q} = \frac{1}{\boldsymbol{R}_{\mathrm{V}}} \cdot \Delta \boldsymbol{p} \qquad \qquad \boldsymbol{R}_{\mathrm{V}} = \frac{\Delta \boldsymbol{p}}{\boldsymbol{Q}}$$

Vascular resistance – conclusions

 $Resistance = \frac{\Delta p}{Flow}$

Since total flow is the same through the various series components of the circulatory system, the greatest resistance to flow resides in the arterioles (the greatest drop in pressure).

$$R_{\rm V} = \frac{8\eta l}{\pi r^4}$$
geometrical factor = $\frac{l}{r^4}$

Arrangement of blood vessels:

parallel circuit

$$Q_{\rm T} = Q_1 + Q_2 + Q_3$$

$$Q = \frac{\Delta p}{R}$$

 $\Delta p = p_{\rm A} - p_{\rm V}$

$$\frac{p_{\rm A} - p_{\rm V}}{R_{eq.}} = \frac{p_{\rm A} - p_{\rm V}}{R_1} + \frac{p_{\rm A} - p_{\rm V}}{R_2} + \frac{p_{\rm A} - p_{\rm V}}{R_3}$$

$$\frac{1}{R_{eq.}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$R_1 = 3 \text{ u.}$$

 $R_2 = 2 \text{ u.}$
 $R_3 = 4 \text{ u.}$

$$\frac{1}{\boldsymbol{R}_{\boldsymbol{eq}.}} = \frac{1}{3 \text{ u.}} + \frac{1}{2 \text{ u.}} + \frac{1}{4 \text{ u.}} = \frac{13}{12 \text{ u.}}$$

$$R_{eq.} = \frac{12 \text{ u.}}{13} = 0.92 \text{ u.}$$

series circuit

The pressure drops along the streamline due to frictional flow of *viscous fluid*.

$$Q = \frac{\Delta p}{R_{eq.}}$$

$$\Delta p = Q \cdot R_{eq.}$$

$$Q \cdot R_{eq.} = Q \cdot R_1 + Q \cdot R_2 + Q \cdot R_3$$

$$R_{eq.} = R_1 + R_2 + R_3$$

EXAMPLE (series circuit)

$l_1 = l \ l_2 = 2l \ l_3 = 2l$

$$r_1 = r \ r_2 = 2r \ r_3 = 0.5r$$

Task: Compare values of the vascular resistance of the segments shown in the drawing.

$$R_{V1} = \frac{8\eta l}{\pi r^4} \qquad R_{V2} = \frac{8\eta 2l}{\pi (2r)^4} = \frac{2}{16} \cdot \frac{8\eta l}{\pi r^4} = \frac{1}{8} R_{V1} \qquad R_{V3} = \frac{8\eta 2l}{\pi (0.5r)^4} = \frac{2}{\frac{1}{16}} \cdot \frac{8\eta l}{\pi r^4} = 32R_{V1}$$

Task:

Assuming R_{V1} equals *R*, determine total vascular resistance of the system in terms of R.

 $R_{\text{Ts.}} = R_1 + R_2 + R_3 = R + 0, 125R + 32R = 33.125R$

Compare drops in pressure along each segment of the system

$$\Delta p_1 = Q \cdot R_{\rm V1}$$

$$\Delta p_2 = \frac{1}{8}Q \cdot R_{\rm V1}$$

 $\Delta p_3 = 32Q \cdot R_{\rm V1}$

geometrical factor₁ =
$$\frac{l}{r^4}$$

geometrical factor₂ =
$$\frac{2l}{(2r)^4} = \frac{1}{8}\frac{l}{r^4} = 0,125\frac{l}{r^4}$$

geometrical factor₃ =
$$\frac{2l}{(0.5r)^4} = 32\frac{l}{r^4}$$

Bernoulli's principle

For non-viscous fluid (!):

TOTAL PRESSURE = LATERAL (STATIC) PRESSURE + DYNAMIC PRESSURE = CONSTANT

$$p_{T1} = p_{T2} = p_{T3} = \text{const.}$$

 $p_{L1} + p_{D1} = p_{L2} + p_{D2} = p_{L3} + p_{D3} = \text{const.}$

$$p_{\rm D} = \frac{1}{2}d \cdot v^2$$

d – density of fluid v – velocity of fluid

Consequences of Bernoulli's Principle

Distensibility of blood vessels - the pulse wave

PULSE WAVE IN DISTENSIBLE VESSELS

$$v_p = \sqrt{\frac{K}{\rho}}$$

K – the bulk modulus of elasticity ρ - density of flowing fluid,

The *bulk modulus of elasticity* **K** is defined as the ratio of change in pressure Δp and the relative change in a vessel volume ($\Delta V/V_0$) resulting from this change:

The velocity *v*_p of a puls wave: Moens- Korteweg equation:

$$v_p = \sqrt{\frac{K}{d}} = F \sqrt{\frac{Ed}{2R\rho}}$$

$$K = \frac{\Delta p}{\frac{\Delta V}{V_0}} = \frac{Ed}{2R}$$

STORED ELSTIC POTENTIAL ENERGY

Typical values of the pulse wave velocity are: 5-8 m/s.

The Young modulus for aorta more than doubles between the ages of 20 and 60 years.

Typical value of the velocity of blood flow in aorta is less than 0.5 m/s.

F - correction factor (due to viscosity of fluid and presence of surrounding tissues)