

By PhD Marek Tuliszka
Department of Biophysics
Poznań University of Medical Sciences

velocity gradient
rate of shear

$$
[\eta]=\frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}=\mathrm{Pa} \cdot \mathrm{~s}
$$

$1 \mathrm{P}=0.1 \mathrm{~Pa} \cdot \mathrm{~s}$ P - poise

VISCOSITY DEPENDS ON TEMPERATURE

WATER	BLOOD
$\eta_{20}=0.0010 \mathrm{~Pa} \cdot \mathrm{~s}(1.0 \mathrm{cP})$	
$\eta_{37}=0.0007 \mathrm{~Pa} \cdot \mathrm{~s}$	$\eta_{37}=0.0030-0.0040 \mathrm{~Pa} \cdot \mathrm{~s}$
$(0.007 \mathrm{P}=0.7 \mathrm{cP})$	$(0.04 \mathrm{P}=4 \mathrm{cP})$

FILOW IN VESSELS

The laminar
flow

Vessel wall

Vessel central axis

Whether turbulent or laminar flow exist in a tube under given conditions may be predicted on the basis of a dimensionless number called the REYNOLDS NUMBER. This number represents the ratio of inertial to viscous forces.
$>$ rate of shear

Viscosity (apparent viscosity) is relatively high at low rates of shear but approaches an asymptotic value above $100 \mathrm{sec}^{-1}$.

Viscosity of blood depends also on:
$>$ vessel (tube) diameter

The relative, apparent viscosity of whole blood declines markedly in tubes of diameters less than approximately 0.4 mm .

AXIAL ACCUIVIULATION

มีรํำคง

Plasma layer of smaller viscosity (lubricant)

Consequence of the axial accumulation:

- the transit time of erythrocytes through the vascular tree is shorter than that of plasma.

LAWV OF FLUID FLOW

Requirements:

Laws of flow:

The Hagen-Poiseuille law

 and the vascular resistance
The Law of Continuity

The volume rate of flow:

$$
Q=\frac{\Delta V}{\Delta t}
$$

$$
[Q]=\frac{m^{3}}{\mathrm{~s}} \text { or } \frac{\text { mlitre }}{\mathrm{s}} \text { or } \frac{\text { litre }}{\text { minte }}
$$

In the case of laminar flow of an incompressible fluid flowing through rigid tubes the volume rate of flow Q remains constant!

$$
Q_{1}=Q_{2}=\text { cost }
$$

$$
Q=\frac{\Delta V}{\Delta t}=\text { const }
$$

$$
Q=\frac{\Delta V}{\Delta t}=\frac{S \cdot \Delta l}{\Delta t}=S \cdot v
$$

$$
S_{1} \cdot v_{1}=S_{2} \cdot v_{2}=\text { const }
$$

$$
\frac{v_{1}}{v_{2}}=\frac{S_{2}}{S_{1}}
$$

For any given flow the ratio of the velocity past one cross section relative to that past a second section depends only on the inverse ratio of the respective areas.

The Law of Continuity - conclusions

If the cross-sectional area of a tube increases the velocity of flowing liquid decreases and inversely.

$$
S_{1} \cdot v_{1}=S_{2} \cdot v_{2}=S_{3} \cdot v_{3}
$$

For the same volume of fluid per second passing from section area S_{1} to section area S_{2}, which is five times greater, the velocity of flow diminishes to one fifth of its previous value.

The Hagen-Poiseuille Law

What factors affect the volume rate of flow Q through the tube above?
$>$ the pressure difference between the ends of the tube Δp
$>$ the viscosity of the fluid η
the tube radius r

$$
Q=\frac{\pi r^{4}}{8 \eta l} \cdot \Delta p
$$

The analogy:

The Δp factor can substitute for the difference in the mean arterial systolic pressure MAP and the mean right diastolic ventricular pressure MVP

$$
C O=\frac{\pi r^{4}}{8 \eta l} \cdot(M A P-M V P)
$$

The Hagen-Poiseuille Law and the vascular resistance

$$
i=\frac{1}{R} \cdot \Delta V \quad Q=\frac{\pi r^{4}}{8 \eta l} \cdot \Delta p
$$

The hydraulic or vascular resistance:

$$
R_{\mathrm{V}}=\frac{8 \eta l}{\pi r^{4}}
$$

$$
R_{\mathrm{V}}=\frac{\Delta p}{Q}
$$

Unit of $R_{\mathrm{V}}: \frac{\mathrm{Pa} \cdot \mathrm{s}}{\mathrm{m}^{3}}$

$$
\text { Unit of } R_{\mathrm{V}}: \frac{1 \mathrm{mmHg}}{\frac{1 \mathrm{mliter}}{\mathrm{~min}}}
$$

Application in physiology

The fundamental equation of cardiovascular physiology

$$
Q=\frac{1}{R_{\mathrm{V}}} \cdot \Delta p
$$

MAP
 $C O=\frac{M A P}{S V R}$

SVR - Sysytemic Vascular Resistance
CO - cardiac output
$\boldsymbol{M A P}$ - mean arterial pressure

Unit of $R_{\mathrm{V}}: \frac{1 \mathrm{mmHg}}{\frac{1 \mathrm{mliter}}{\mathrm{min}}}$

Vascular resistance - examples:

$$
Q=\frac{1}{R_{\mathrm{V}}} \cdot \Delta p
$$

$$
\text { FLOW }=\frac{\text { DIFFERENCE IN PRESSURE }}{\text { RESISTANCE TO FLOW }}
$$

RESISTANCE TO FLOW $=\frac{\text { DIFFERENCE IN PRESSURE }}{F L O W}$

Example: Cardiac output (CO) through the circulatory system, when a person is at rest, is $100 \mathrm{ml} / \mathrm{s}(6000 \mathrm{ml} / \mathrm{min}$.)
and
the pressure difference from the systemic arteries to the systemic veins is approximately about 100 mmHg . Therefore the resistance of the entire system, SVR (the systemic vascular resistance) is approximately equal to:

$$
S V R=\frac{100 \mathrm{mmHg}}{6000 \frac{\mathrm{ml}}{\mathrm{~min}}}=0.017 \frac{\mathrm{mmHg}}{\frac{\mathrm{ml}}{\mathrm{~min}}}=0.017 \frac{\mathrm{mmHg} \cdot \mathrm{~min}}{\mathrm{ml}}
$$

Example: The brain has flow 750 ml per minute, the pressure difference is 100 mmHg . Determine the cerebrovascular resistance (CVB):

$$
R_{\mathrm{CVB}}=\frac{100 \mathrm{mmHg}}{750 \frac{\mathrm{ml}}{\text { minute }}}=0.13 \frac{\mathrm{mmHg} \cdot \mathrm{~min}}{\mathrm{ml}}
$$

Example: The lungs have flow $100 \mathrm{ml} / \mathrm{s}$, mean pulmonary arterial pressure is 16 mmHg and mean left atrial pressure is 2 mmHg , thus:

$$
R_{\text {lungs }}=\frac{16 \mathrm{mmHg}-2 \mathrm{mmHg}}{6000 \frac{\mathrm{ml}}{\text { minute }}}=0.0023 \frac{\mathrm{mmHg} \cdot \mathrm{~min}}{\mathrm{ml}}
$$

NOTE:

If the difference of pressure at the end terminals of a system is smaller, whereas the rate of flow is unchanged the vascular resistance shown by the system is :

$$
\boldsymbol{Q}=\frac{\mathbf{1}}{\boldsymbol{R}_{\mathrm{V}}} \cdot \Delta \boldsymbol{p} \quad R_{\mathrm{V}}=\frac{\Delta \boldsymbol{p}}{Q}
$$

Vascular resistance - conclusions

Resistance $=\frac{\Delta p}{\text { Flow }}$

Since total flow is the same through the various series components of the circulatory system, the greatest resistance to flow resides in the arterioles (the greatest drop in pressure).

$$
R_{\mathrm{V}}=\frac{8 \eta l}{\pi r^{4}}
$$

geometrical factor $=\frac{l}{r^{4}}$

Arrangement of blood vessels:

- parallel circuit

$$
\begin{gathered}
Q_{\mathrm{A}}=Q_{\mathrm{V}}=Q_{\mathrm{T}} \\
Q_{\mathrm{T}}=Q_{1}+Q_{2}+Q_{3}
\end{gathered}
$$

$$
Q_{\mathrm{T}}=Q_{1}+Q_{2}+Q_{3}
$$

$$
Q=\frac{\Delta p}{R}
$$

$\Delta p=p_{\mathrm{A}}-p_{\mathrm{V}}$

$$
\frac{p_{\mathrm{A}}-p_{\mathrm{V}}}{R_{\text {eq. }}}=\frac{p_{\mathrm{A}}-p_{\mathrm{V}}}{R_{1}}+\frac{p_{\mathrm{A}}-p_{\mathrm{V}}}{R_{2}}+\frac{p_{\mathrm{A}}-p_{\mathrm{V}}}{R_{3}}
$$

$$
\frac{1}{R_{e q .}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

$$
\begin{aligned}
& R_{1}=3 \mathrm{u} . \\
& R_{2}=2 \mathrm{u} . \\
& R_{3}=4 \mathrm{u} .
\end{aligned}
$$

$$
\frac{1}{\boldsymbol{R}_{e q .}}=\frac{1}{3 \mathrm{u} .}+\frac{1}{2 \mathrm{u} .}+\frac{1}{4 \mathrm{u} .}=\frac{13}{12 \mathrm{u} .}
$$

$$
\boldsymbol{R}_{\text {eq. }}=\frac{12 \mathrm{u} .}{13}=0.92 \mathrm{u}
$$

series circuit

The pressure drops along the streamline due to frictional flow of viscous fluid.

$$
Q=\frac{\Delta p}{\boldsymbol{R}_{\text {eq. }}} \quad \Delta p=Q \cdot \boldsymbol{R}_{\text {eq. }} \quad Q \cdot \boldsymbol{R}_{\text {eq. }}=Q \cdot R_{1}+Q \cdot R_{2}+Q \cdot R_{3}
$$

$$
R_{e q .}=R_{1}+R_{2}+R_{3}
$$

EXAMPLE (series circuit)

$$
l_{1}=l \quad l_{2}=2 l \quad l_{3}=2 l
$$

$$
r_{1}=r \quad r_{2}=2 r \quad r_{3}=0.5 r
$$

Task: Compare values of the vascular resistance of the segments shown in the drawing.

$$
R_{\mathrm{V} 1}=\frac{8 \eta l}{\pi r^{4}} \quad R_{\mathrm{V} 2}=\frac{8 \eta 2 l}{\pi(2 r)^{4}}=\frac{2}{16} \cdot \frac{8 \eta l}{\pi r^{4}}=\frac{1}{8} R_{\mathrm{V} 1} \quad R_{\mathrm{V} 3}=\frac{8 \eta 2 l}{\pi(0.5 r)^{4}}=\frac{2}{\frac{1}{16}} \cdot \frac{8 \eta l}{\pi r^{4}}=32 R_{\mathrm{V} 1}
$$

Task:
Assuming $R_{\mathrm{V} 1}$ equals R, determine total vascular resistance of the system in terms of R .

$$
R_{\mathrm{Ts} .}=R_{1}+R_{2}+R_{3}=R+0,125 R+32 R=33.125 R
$$

$$
l_{1}=l \quad l_{2}=2 l \quad l_{3}=2 l
$$

$$
r_{1}=r \quad r_{2}=2 r \quad r_{3}=0.5 r
$$

Compare drops in pressure along each segment of the system

$$
\begin{aligned}
& \Delta p_{1}=Q \cdot R_{\mathrm{V} 1} \\
& \Delta p_{2}=\frac{1}{8} Q \cdot R_{\mathrm{V} 1}
\end{aligned}
$$

$$
\Delta p_{3}=32 Q \cdot R_{\mathrm{V} 1}
$$

geometrical factor $_{2}=\frac{2 l}{(2 r)^{4}}=\frac{1}{8} \frac{l}{r^{4}}=0,125 \frac{l}{r^{4}}$

Bernoulli's principle

For non-viscous fluid (!):

TOTAL PRESSURE = LATERAL (STATIC) PRESSURE + DYNAMIC PRESSURE = CONSTANT

$$
\begin{aligned}
& p_{\mathrm{T} 1}=p_{\mathrm{T} 2}=p_{\mathrm{T} 3}=\text { const. } \\
& p_{\mathrm{L} 1}+p_{\mathrm{D} 1}=p_{\mathrm{L} 2}+p_{\mathrm{D} 2}=p_{\mathrm{L} 3}+p_{\mathrm{D} 3}=\text { const. }
\end{aligned}
$$

$$
d-\text { density of fluid }
$$

$$
v \text { - velocity of fluid }
$$

Consequences of Bernoulli's Principle

Cervical arteries
(X-rays with contrast media)

Distensibility of blood vessels
 - the pulse wave

PULSE WAVE IN DISTENSIBLE VESSELS

$$
v_{p}=\sqrt{\frac{K}{\rho}}
$$

K - the bulk modulus of elasticity ρ - density of flowing fluid,

The bulk modulus of elasticity \boldsymbol{K} is defined as the ratio of change in pressure Δp and the relative change in a vessel volume ($\left.\Delta \mathbf{V} / \mathbf{V}_{\mathbf{0}}\right)$ resulting from this change:
E - Young's modulus of wall material
d - wall thickness
R - vessel radius

$$
K=\frac{\Delta p}{\frac{\Delta V}{V_{0}}}=\frac{E d}{2 R}
$$

The VElocity V_{P} OF A PULS WAVE: Moens- Korteweg equation:

STORED ELSTIC
POTENTIAL ENERGY

Typical values of the pulse wave velocity are: $5-8 \mathrm{~m} / \mathrm{s}$.

The Young modulus for aorta more than doubles between the ages of 20 and 60 years.

Typical value of the velocity of blood flow in aorta is less than $0.5 \mathrm{~m} / \mathrm{s}$.
F - correction factor (due to viscosity of fluid and presence of surrounding tissues)

