THERMAL PROPERTIES OF DENTAL MATERIALS

CAN AFFECT THE SENSATION OF <u>COLD AND HOT</u>

AND

CAN CAUSE <u>MECHANICAL FAILURE</u> DUE TO DIFFRENT EXPANSION OR CONTRACTION

THERMAL CONDITIONS IN THE ORAL CAVITY

32°C - 37°C - open or closed

 0°C - 70°C $\,$ - ingestion of hot or cold drink or food

For some dental materials localized temperature increase is observed due to highly exothermic nature of the setting reactions, for instance:

Temperature rise during setting of some selected materials (100 mg sample)	
Material	Temperature rise (°C)
Zinc phosphate cement	1.9
Acrylic resin	9.6!
Glass ionomer cement	1.0

After: Aplied Dental Materials, John F. McCabe and Angus W.G. Walls, 2008

Tooth anatomy

Enamel and dentine - relatively good thermal insulators

Pulp - very sensitive to temperature changes!

THERMAL DEMANDS OF RESTORING MATERIALS:

- ✓ GOOD THERMAL INSULATION
- ✓ SHOULD NOT UNDERGO A LARGE TEMPERATURE INCREASE WHEN SETTING IN SITU – HEAT LIBERATED AND THE ASSOCIATED RISE IN TEMPERATURE MAY CAUSE CLINICAL PROBLEMS

 ✓ SMALL DIMENSIONAL CHANGES RESULTING AS A CONSEQUENCE OF THE <u>THERMAL EXPANSION</u> <u>PHENOMENON!</u>

CONDUCTION OF HEAT THE FOURIER LAW:

THERMAL CONDUCTIVITY

$$\lambda = \frac{\frac{\Delta Q}{\Delta t}}{S\frac{\Delta T}{\Delta x}}$$
 [λ]

$$[\lambda] = \frac{W}{mK}$$

		MATERIAL	λ (W/mK)
Go	od	silver	422
condu	uctors	gold	~300
		iron	80
		glass	0.7-1.0
	,	water	0.6
Po	or	wood	0.1-0.2
condu (go insula	uctors ood ators)	air	0.02

COEFFICIENT OF THERMAL CONDUCTIVITY OF SOME SELECTED DENTAL MATERIALS

		λ , W m ⁻¹ K ⁻¹
Enamel	0.92	
Dentine	0.63	
WATER (37.8°C/100°F)	0.63	
Silicate materials	0.75	
Acrylic resin	0.21	
Zinc phosphate cement	1.2 (!)	cavity lining or base
Dental amalgam	23 (!)	does not provide satisfactory thermal insulation of the pulp
Gold	292	
Silver	422	

After: Applied Dental Materials, John F. McCabe and Angus W.G. Walls, 2008

THE CONDUCTION OF HEAT IS A SLOW PROCESS. THERMAL STIMULI ARE USUALLY OF BRIEF DURATION!

THERMAL DIFFUSIVITY, k

V	water	1.5
$k = \frac{\lambda}{C_s} - \text{specific heat capacity,}$ de	entine	2.6
$C_{\rm s} \cdot d$ d - density, λ - thermal conductivity er	namel	4.2
$[k] = m^2/s$	silver	1690

Thermal diffusivity is a material property which describes the rate at which thermal stimulus travels through a material.

A material insulating properties are characterized by its thermal conductivity and/or thermal diffusivity

INTERPRETATION: The linear coefficient of thermal expansion equals the fractional change in length $(\Delta l/l_0)$ over unit change in temperature ΔT .

EXPANSION – CONTRACTION MISMATCH

Clinical problem:
fracture possible

 \leq

DENTINE	8.0
ENAMEL	11.4
AMALGAM	25 !
COMPOSITE RESINS	25-60
CERAMIC	7-9
METAL:	
Nickel	13.3
Silver	19.0
Gold	13.8
SILICATE CEMENTS	10

CIRCUMFERENTIAL TENSION IN WALLS DURING HEATING RESULTING STRESS

METAL-BONDED CERAMIC SYTEMS

- MODERATE MISMATCH: REDUCED TENDENCY TO CRACKING
- > TOO LARGE MISMATCH (!):
 - CRAZING
 - FRACTURE
 - DE-BONDING

METAL-BONDED CERAMIC SYSTEM - COOLING

Too large mismatch ($\alpha_p \ll \alpha_M$) : the ceramic fractures circumferentially

THERMAL EXPANSION VS. MECHANICAL STRENGTH

COMPRESSIVE STRESS – VS. THERMAL EXPANSION

A sample on enamel was placed between two rigid, unmovable supports. Calculate how large must be the increase of temperature of the enamel sample to cause its damage as a result of compressive stress.

Given: compressive strength (σ): 190 MPa Young's modulus (*E*): 84 GPa coefficient of thermal expansion (α): 11×10⁻⁶ K⁻¹

$$\sigma = E\alpha\Delta T$$

$$\Delta T = \frac{\sigma}{E\alpha}$$

$AT = \frac{190 \times 10^6}{200 \text{ km}^2} \approx 200 \text{ km}^2$	
$\Delta I =$	$84 \times 10^9 \cdot 11 \times 10^{-6}$

FOR FILLING MATERIALS THE MOST IDEAL COMBINATION OF PHYSICAL PROPERTIES ARE:

Low value of thermal diffusivity

THERMAL EXPANSION SIMILAR TO THAT FOR TOOTH

