Wzory na ćwiczenia laboratoryjne z biofizyki kierunek lekarsko-dentystyczny:

$F = \eta \cdot S \cdot \frac{\Delta v}{\Delta x}$	$\eta_{w ext{i}} = rac{\eta}{\eta_0} - 1$	$[\eta] = \lim_{c \to 0} \left(\frac{\eta_{wt}}{c}\right)$	$\Delta V = \frac{\pi \cdot r^4 \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$	
$R = 6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\eta = \frac{2 \cdot r^2 \cdot g \cdot (\rho - \rho_c)}{9 \cdot v}$	$\frac{\eta}{\eta_0} = \frac{t}{t_0} \cdot \frac{\rho}{\rho_0}$	$\Phi = rac{V_c}{V_r}$	
$\frac{\eta}{\eta_0} = 1 + 2.5 \cdot \Phi$	$[\eta] = 2.5 \cdot \frac{N_A}{M} \cdot v_{cz}$	$r = \sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_A} \cdot [\eta]}$	$\frac{\rho}{\rho_0} = 1 + 0.23 \cdot c$	

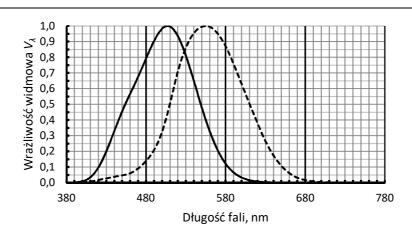
$$W = \sigma \cdot \Delta S \qquad \qquad \sigma = \frac{F}{l} \qquad \qquad \Delta p = \frac{2 \cdot \sigma}{R} \qquad \qquad \frac{\sigma}{\sigma_0} = \frac{n_0 \cdot \rho}{n \cdot \rho_0} \qquad \sigma = \frac{r \cdot h \cdot \rho \cdot g}{2 \cdot \cos(\alpha)} \qquad \sigma = \frac{\rho \cdot V \cdot g}{2 \cdot \pi \cdot r \cdot n}$$

$$\sigma_{p} = \frac{F}{l} \qquad \sigma_{p} = \sigma_{0} - \sigma \qquad \sigma_{p} \cdot S_{w} = n_{cz} \cdot k_{B} \cdot T \qquad S_{w} = n_{cz} \cdot s_{0}$$

$$V_{w} = \frac{c \cdot V_{k}}{\rho} \qquad s_{cz} = \frac{S_{w}}{n_{cz}} = \frac{S_{w} \cdot M}{c \cdot V_{k} \cdot N_{A}} \qquad d_{cz} = \sqrt{\frac{4 \cdot s_{cz}}{\pi}} \qquad l_{cz} = \frac{c \cdot V_{k}}{\rho \cdot S_{w}}$$

$\frac{\mathrm{d}n}{\mathrm{d}t} = -D \cdot S \cdot \frac{\mathrm{d}c}{\mathrm{d}x}$	$D = \frac{k \cdot T}{6 \cdot \pi \cdot r \cdot \eta}$	$\overline{\Delta x^2} = 2 \cdot D \cdot t$	$P = \frac{D}{\mathrm{d}x}$	
$\frac{\mathrm{d}n}{\mathrm{d}t} = P \cdot S \cdot (c_1 - c_2)$	$c_2 = \frac{c_0}{2} \cdot (1 - e^{-C \cdot D \cdot t})$	$C = \frac{2 \cdot A}{V \cdot \mathrm{d}x}$	$\ln \left(\frac{c_0}{c_0 - 2 \cdot c_2} \right) = C \cdot D \cdot t$	

$c = c_0 \cdot e^{-\kappa_D \cdot t}$	$c = c_0 \cdot e^{-\kappa_E \cdot t}$	$\frac{c_0}{2} = c_0 \cdot \mathrm{e}^{-\kappa_{E} \cdot t_{1/2}}$	$ \kappa_E = \frac{\ln(2)}{t_{1/2}} \approx \frac{0.693}{t_{1/2}} $
$\pi = f \cdot c \cdot R \cdot T$			


$$\mu_{i} = \left(\frac{\partial G_{i}}{\partial n_{i}}\right)_{T, p, n_{j} d l a \ j \neq i} \qquad \mu_{i} = \mu_{ic}^{0} + R \cdot T \cdot \ln(c_{i}) \qquad \tilde{\mu}_{i} = \mu_{i} + \varphi \cdot F \cdot z \qquad Me \Rightarrow Me^{z+} + z \cdot e^{-}$$

$$\Delta V_{e} = V_{e} - V_{r} = \Delta V_{0} + \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln(c_{j}) \qquad \Delta V_{d} = V_{2} - V_{1} = \left(\frac{u^{+} - u^{-}}{u^{+} + u^{-}}\right) \cdot \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln\left(\frac{c_{1}}{c_{2}}\right)$$

$$u = \frac{v}{E} \qquad E = \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln\left(\frac{c_{1}}{c_{2}}\right) \qquad E = \Delta V_{e1} - \Delta V_{e2} \qquad E = \Delta V_{e} - \Delta V_{kal}$$

$$W = q \cdot U \qquad I = \frac{1}{R} \cdot U \qquad G = \frac{1}{R} \qquad R = \rho \cdot \frac{l}{S}$$

$h \cdot v = E_k + W$ $h \cdot v = E_k + h \cdot v'$		+ W $h \cdot v = E_{kp} + m_{0p} \cdot c^2 + E_{ke} + m_{0e} \cdot c^2$			$\cdot c^2$	$I = I_0 \cdot e^{-\mu \cdot d}$			
$\mu_m = \frac{\mu}{\rho}$	$d_{1/2}$	— <u>``</u>	$\approx \frac{0,693}{\mu}$	a = 0	$a_0 \cdot e^{-\mu \cdot d}$	$\ln(a) = \ln(a_0) - \mu \cdot d$	LE'	$T = \frac{\Delta E}{\Delta d}$	$rac{\Delta n_j}{\Delta d}$

$\Omega = \frac{S}{R^2}$	$I_E = \frac{\mathrm{d}\Phi_E}{\mathrm{d}\Omega} = \frac{\frac{\mathrm{d}Q_E}{\mathrm{d}t}}{\mathrm{d}\Omega} \Rightarrow [I_E] = \frac{\mathrm{W}}{\mathrm{sr}}$	$I_V = \frac{\mathrm{d}\Phi_V}{\mathrm{d}\Omega} \Rightarrow [I_V] = \mathrm{cd} = \frac{\mathrm{lm}}{\mathrm{sr}}$
$\Phi_V = I_V \cdot d\Omega \Rightarrow [\Phi_V] = \operatorname{lm} = \operatorname{cd} \cdot \operatorname{sr}$	$P = \Phi_E \equiv \frac{\mathrm{d}Q_E}{\mathrm{d}t} \Rightarrow [\Phi_E] = W$	$\mathrm{d}\Phi_V = \left(683 \; \frac{\mathrm{lm}}{\mathrm{W}}\right) \cdot V_\lambda \cdot \mathrm{d}\Phi_E$
$E_V = \frac{\mathrm{d}\Phi_V}{\mathrm{d}S} \Rightarrow [E_V] = 1 \mathrm{lx} = \frac{1 \mathrm{lm}}{1 \mathrm{m}^2}$	$E_V = \frac{I_V}{r^2} \cdot \cos(\alpha)$	$L_V = \frac{I_V}{S \cdot \cos(\alpha)} \Rightarrow [L_v] = \frac{\text{cd}}{\text{m}^2}$
$I_V(\alpha) = I_{V\perp} \cdot \cos(\alpha)$	$L_V = \frac{I_{V\perp}}{S}$	$L_V = \frac{\Phi_V}{S \cdot \cos(\alpha) \cdot \Omega}$

$Q = \frac{\Delta V}{\Delta t}$	$S_1 \cdot v_1 = S_2 \cdot v_2 = const$		$p_{S1} + \rho \cdot g \cdot h_1 + \frac{1}{2} \cdot \rho \cdot v_1^2 = p_{S2} + \rho \cdot g \cdot h_2 + \frac{1}{2} \cdot \rho \cdot v_2^2 = const$				
$Q = \frac{\pi \cdot r}{8 \cdot l}$	$Q = \frac{\pi \cdot r^4}{8 \cdot l \cdot \eta} \cdot \Delta p$		· Δp	$N_R = \frac{2 \cdot r \cdot v \cdot \rho}{\eta}$		$v_p = \frac{\Delta V}{S \cdot \Delta t}$	
$v = \sqrt{\frac{K}{\rho}} \qquad K =$		$\frac{\Delta p}{\Delta V}$	$v_t = F \cdot \sqrt{\frac{E \cdot c}{2 \cdot R}}$	$\frac{\overline{d}}{\cdot \rho_c}$	$v_t = rac{l_{AB}}{\Delta t}$		