SURFACE TENSION

			Name:	
			Group:	
			Date:	
 Goal of the exp 	periment:			
A. THE STALAG	MOMETER METHO	D		
Results of me	easurements of nun	nber of drops flowing o	ut from stalagmometer	<u>ca</u> pillary:
		water	examined liquid	
		n_0	, n	
	1			=
	2			1
	3			
	4			
	5			
	6			
	7			
	9			_
	10			
	mean value			=
	mean value			
temperature	of liquids:			
density of wa	ater:	density	of the examined liquid:	
$d_0 \pm \Delta d_0 =$		$d + \Lambda d$	=	
		u ⊥ Δu		
mean numbe	er of drops:			
$\overline{n}_0 = \dots$		$\overline{n} = \dots$		
standard dev	riation of the mean:			
$s_{\overline{n}_0} = \dots$		$s_{\overline{n}} = = .$		
maximum er	ror of the mean val	ue:		
$\Delta \overline{n}_0 = \dots$		$\Delta \overline{n} =$		
U				
	relative surfac	e tension: $\frac{\sigma}{\sigma_0} \pm \Delta \left(\frac{\sigma}{\sigma_0} \right)$	=	
		$\sigma_0 \qquad (\sigma_0)$		

B. THE CAPILLARY METHOD

	density of liquid d±Δd	capillary radius $r \pm \Delta r$	height of the column of liquid $h\pm\Delta h$	surface tension σ	mean value σ
water					
examined liquid:					

The Estima	The Estimation of error of measurement of surface tension for the capillary of the greatest diameter:							
a) for wate	er:	$\Delta \sigma_0 = \dots$						
		$\sigma_0 \pm \Delta \sigma_0 = \dots$						
b) for exar	mined liquid:	$\Delta \sigma = \dots$						
		$\sigma \pm \Delta \sigma = \dots$						
	relati	ive surface ten	sion: $\frac{\sigma}{\sigma_0} \pm \Delta$	$\left(\frac{\sigma}{\sigma_0}\right) = \dots$				
Conclusions	5:							
							•••••	
•••••				•••••				
				•••••				

MONOMOLECULAR LAYER

								Name:			
								Group:			
								Date:			
1. Go	al of the ex	perimen	t:								
		'									
2. Res	sults of mea	asureme	nts of the	e monon	nolecular	⁻ layer di	amet	er d∟:			
		1	2	3	4	5	6	7	8	9	10
d_{L}	unit										
$\overline{d}_{\scriptscriptstyle ar{L}}$	nan value of = ndard devia =	ation of t	he mear	n value:							
c) ma	ximum erro	or of the	mean va	lue:							
Δa	<u> </u>										
Dia	meter of th	ne monoi	molecula	ar layer:							
\overline{d}_{L}	$\pm \Delta \overline{d}_{L} =$										
3. Vol	ume $V_{\rm d}$ of a	a single c	lrop of th	ne steari	c acid sol	lution:					
$V_{\rm d}$:	$\pm \Delta V_{d} = \dots$										
4. Din	nensions of	the stea	ıric acid ı	molecule	9:						
		Dk	منيم امماء					ـــامير	(estimated	

Physical quantity	unit	value	estimated error
Mass concentration of the solution, c			
Molar mass of the stearic acid, M			
Molar concentration of the solution, $c_{ m m}$			
Density of the stearic acid, $ ho_{\scriptscriptstyle{SA}}$			
Diameter of the stearic acid molecule, $d_{ m m}$			
Length of the stearic acid molecule, $I_{\rm m}$			

Con	clusions
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
·	