STRESZCZENIE

W ostatnich latach przeprowadzono w Polsce wiele badań epidemiologicznych określających częstość występowania nadwagi i otyłości. Wyniki wskazują, że problem narasta i dotyczy każdej grupy wiekowej, niezależnie od płci. Otyłość jako choroba przyczynia się do wielu powikłań zdrowotnych. Stąd postępowanie terapeutyczne nie powinno sprowadzać się tylko do redukcji masy ciała, ale również minimalizowania ryzyka chorób towarzyszących i zaburzeń metabolicznych.

Współwystępowanie otyłości i insulinooporności, prowadzącej w konsekwencji do powstawania upośledzonej tolerancji glukozy, jest od wielu lat dobrze udokumentowane. Z doniesień literaturowych wynika, że substancje wytwarzane przez tkankę tłuszczową, tzw. adipocytokinny jak leptyna, adiponektyna i rezystyna mogą modyfikować działanie insuliny. Oprócz zaburzeń gospodarki węglowodanowej u pacjentów otyłych często występuje nieprawidłowy profil lipidowy. Jednym z postulatów powstawania tego zaburzenia jest wysokie spożycie nasyconych kwasów tłuszczowych (czyli pochodzenia zwierzęcego) oraz sztucznych izomerów trans nienasyconych kwasów tłuszczowych. Z dostępnych danych wynika, że naturalne kwasy tłuszczowe trans, znajdujące się głównie w produktach zwierzęcych, mogą wręcz korzystnie oddziaływać na zawartość tkanki tłuszczowej w organizmie. Jednym z tych kwasów jest sprzężony kwas linolowy (ang. conjugated linoleic acid, CLA). W ostatnich latach coraz częściej dyskutuje się na temat wpływu CLA nie tylko na redukcję masy ciała, ale również na ilość tkanki tłuszczowej oraz występowanie zaburzeń metabolicznych związanych z jej nadmiarem.

Korzystne działanie CLA zostało potwierdzone w szczególności w badaniach na modelach zwierzęcych. Z badań tych wynika, że kwas ten posiada właściwości przeciwnowotworowe, przeciwzapalne, przeciwmiąższowe oraz przeciwutleniające. Ponadto niektóre badania wskazują, iż mieszanina izomerów CLA wykazuje zdolność redukowania tkanki tłuszczowej poprzez zmniejszenie lipogenezy, wzrost wydatkowania energii, lipolizę oraz utlenianie tłuszczów, co może również wpływać na gospodarkę lipidową, węglowodanową i stężenia adipocytokin.

Niewiele jest prac potwierdzających skuteczność działania CLA na czynniki rozwoju chorób dietozależnych u ludzi. Stąd wynika potrzeba prowadzenia długoterminowych badań randomizowanych, z użyciem różnych dawek oraz zróżnicowanych schematów dietetycznych w celu potwierdzenia wpływu CLA lub jego braku na gospodarkę węglowodanową i lipidową.
Cele pracy

Określenie wpływu suplementacji sprzężonym kwasem linoleowym (CLA) u kobiet z nadwagą lub otyłością na:
- gospodarkę lipidową (profil lipidowy),
- gospodarkę węglowodanową (stężenie glukozy i insuliny we krwi, wskaźnik HOMA-IR),
- stężenia wybranych adipocytokini (leptyny, adiponektyny, rezystyny, wisfatyny) oraz greliny.

Material i metody

Badanie przeprowadzono w latach 2014-2015, zakwalifikowano do niego 74 kobiety z nadwagą lub otyłością. Kryteria włączenia do badania obejmowały: wiek >18 r.ż., nadwagę lub otyłość (BMI ≥ 25kg/m²), stabilną masę ciała (± 3 kg w ciągu ostatnich 3 miesięcy), chęć uczestniczenia w badaniu (podpisanie pisemnej zgody uczestnictwa w badaniu). Do kryteriów wykluczenia z badania należały: ogólnoustrojowe choroby przewlekłe: m.in. choroby wątroby i trzustki, celiakia, podaż suplementów zawierających w składzie CLA (w okresie miesiąca poprzedzającego badanie), podaż składników wpływających na trawienie/wchłanianie tłuszczów i węglowodanów (np. chitosan, orlistat, zielona herbata) w okresie miesiąca poprzedzającego badanie, ciąże.

Badanie miało charakter badania randomizowanego, kontrolowanego placebo z podwójnie ślepą próbą i zostało przeprowadzone według ogólnie przyjętego schematu CONSORT (ang. Consolidated Statement of Reporting Trials, CONSORT) z 2010 roku. Uczestniczki zostały losowo przydzielone do grupy suplementującej CLA bądź placebo przez 12 tygodni. Pacjentki codziennie otrzymywały kapsułki zawierające 3 g/dobę 80% CLA lub 3 g/dobę oleju słonecznikowego (jako placebo). Uczestniczki zostały poinstruowane, aby w trakcie trwania badania nie zmieniać swoich dotychczasowych nawyków żywieniowych oraz utrzymywać dotychczasową aktywność fizyczną.


Wyniki

Ostatecznie badanie ukończyło 31 osób z grupy CLA i 30 osób z grupy placebo. W trakcie interwencji badanie przerwało: 6 pacjentek z grupy CLA (4 – nieobecność na wyznaczonej wizycie, 1 – ciąża, 1 – nudności) i 7 pacjentek z grupy placebo (4 – nieobecność w wyznaczonych terminach badań, 2 – nudności, 1 – wysypka).

Przed wdrożoną interwencją nie stwierdzono występowania różnic istotnych statystycznie między badanymi grupami pod względem parametrów gospodarki lipidowej (stężenie cholesterolu całkowitego, frakcji LDL i HDL cholesterolu oraz triglicerydów) i węglowodanowej (stężenie glukozy i insuliny na czecz, wskaźnik HOMA-IR) oraz stężenia adipocytokin (leptyny, adiponektyny, wisfatyny i rezystyny) i greliny.

Zmiany stężeń profilu lipidowego w trakcie wdrożonej suplementacji (stężenia cholesterolu całkowitego, frakcji LDL i HDL cholesterolu oraz triglicerydów) nie różniły się istotnie statystycznie między grupą CLA a placebo (TC [mg/dl]: 3 <22–16> vs. 3 <16–18>, p=0,4177; LDL [mg/dl]: -3 <17–17> vs. -1 <9–13>, p=0,7691; HDL [mg/dl]: -1 <3–3> vs. -1 <3–2>, p=0,6622; TG [mg/dl]: -9 <22–10> vs. -7 <28–27>, p=0,5616).

Podobnie nie wykazano różnic istotnych statystycznie dla zmian stężenia glukozy i insuliny na czecz oraz wskaźnika HOMA-IR między grupą CLA a placebo (glukoza [mg/dl]: 3 <5–11> vs. -2 <7–6>, p=0,2137; insulina [mU/l]: 2 <1–4> vs. 1 <2–3>, p=0,6110; HOMA-IR: 0,5 <0,3–1,0> vs. 0,4 <1,0–0,8>, p=0,2534). W grupie CLA po zastosowanej suplementacji wykazano znamienne większe wartości wskaźnika HOMA-IR (3,3 <2,1–4,6> vs. 3,8 <2,4–4,9>, p=0,0435), natomiast w grupie placebo nie stwierdzono takiej zależności.

Porównując zmiany stężeń rezystyny, leptyny, adiponektyny oraz greliny między grupą CLA a placebo nie wykazano różnic istotnych statystycznie (rezystyna [ng/ml]: 0,9 <1,5–2,2> vs. 0,4 <0,8–1,9>, p=0,7691; leptyna [ng/ml]: -2,0 <3,3–0,3> vs. -0,6 <2,5–2,8>, p=0,2416;
adiponektyna [µg/ml]: -0,4 <-1,2–0,5> vs. 0,3 <-0,7–1,1>, p=0,0930; grelina [ng/ml]: 2,5 <-1,4–6,0> vs. 1,8 <-1,6–4,6>, p=0,7691). Taką różnicę stwierdzono natomiast dla stężeń wisfatyny (CLA: 0,4 <-1,2–1,7 vs. placebo: -0,4 <-1,9–0,9>, p=0,0452). W grupie placebo wykazano również częstsze występowanie spadków stężeń wisfatyny w porównaniu do grupy CLA (63% vs. 35,5%, RR (95% CI)=1,7595 (1,0275–3,0130); p=0,0395). Dodatkowo w grupie otrzymującej CLA w efekcie prowadzonej suplementacji zaobserwowano znamieny spadek stężenia leptyny i wzrost stężenia greliny (leptyna [ng/ml]: 20,8 <14,1–28,6> vs. 18,5 <12,4–28,3>, p=0,0343, grelina [ng/ml]: 12,0 <10,3–13,6> vs. 15,3 <12,1–19,4>, p=0,0432).

Wnioski

1. Suplementacja mieszaniny 50:50 izomerów sprzężnego kwasu linolowego (CLA) w dawce 3 g/dobę przez 12 tygodni u kobiet z nadwagą lub otyłością nie wpływa na parametry profilu lipidowego.

2. Zastosowana suplementacja CLA nie wpływa na wartości glikemii i insulinemii na czczo u kobiet z nadwagą lub otyłością.

3. Podaż CLA może skutkować zmianami stężeń adipocytokin, taką zależność stwierdzono dla wisfatyny.

Słowa kluczowe: nadwaga, otyłość, sprzężony kwas linolowy, glukoza, insulina, profil lipidowy, adipocytokiny