
$\delta X = X - X_0$		$X_0 \in \langle X - Z \rangle$	$\Delta X, X + \Delta X \rangle$	$\bar{T} =$	$=\frac{T_1+T_2+T_3+\ldots\ldots+T_n}{n}$
$s_T = \sqrt{\frac{(T_1 - \bar{T})^2 + (T_2)^2}{T_1^2}}$	$\frac{(1-\bar{T})^2+\cdots}{n-1}$	$\cdots + (T_n - \bar{T})^2$	$s_{\overline{T}} = \frac{s_T}{\sqrt{n}}$	=	$\Delta T = 3 \cdot s_{\overline{T}}$
$F = const \cdot A^{a} \cdot B^{b} \cdot C^{c} \cdot \dots \qquad \Delta F = \pm F \cdot \left[\left a \cdot \frac{\Delta A}{A} \right + \left b \cdot \frac{\Delta B}{B} \right + \left c \cdot \frac{\Delta C}{C} \right + \dots \right] \qquad F = A \pm B \Rightarrow \Delta F = \Delta A + \Delta B$					
$P = \frac{1}{f}$		$\frac{1}{x} + \frac{1}{f} = \frac{1}{y}$		$P = P_1 + P_2 - d \cdot P_1 \cdot P_2$	
$R = \frac{1}{s_D}$			$A = \frac{1}{s_D} - \frac{1}{s_B} = R - \frac{1}{s_B}$		
$p = \rho \cdot c \cdot v$		$I = \frac{\Delta}{\Delta t}$	$I = \frac{1}{2} \cdot \frac{p_0^2}{\rho \cdot c}$		$I = \frac{1}{2} \cdot \frac{p_0^2}{\rho \cdot c}$
$L = \log_{10}\left(\frac{I}{I_0}\right)$			$L_p = 2 \cdot \log_{10} \left(\frac{p}{p_0} \right)$		
$F = \eta \cdot S \cdot \frac{\Delta v}{\Delta x} \qquad \eta,$		$u_{w^{\dagger}} = \frac{\eta}{\eta_0} - 1$		$\frac{\eta_{w^{\dagger}}}{c}$	$\Delta V = \frac{\pi \cdot r^4 \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$
$R = 6 \cdot \pi \cdot r \cdot v \cdot \eta \qquad \qquad \eta = \frac{2 \cdot \eta}{\eta}$		$\frac{\cdot r^2 \cdot g \cdot (\rho - \rho_c)}{9 \cdot v}$	$\frac{\eta}{9 \cdot v} = \frac{t}{\eta_0} \cdot \frac{\rho}{\rho_0}$		$\Phi = \frac{V_c}{V_r}$
$\frac{\eta}{\eta_0} = 1 + 2.5 \cdot \Phi \qquad [\eta]$		$= 2.5 \cdot \frac{N_A}{M} \cdot v_{cz} \qquad \qquad r = \sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_A}}$		$\overline{J_A} \cdot [\eta]$	$\frac{\rho}{\rho_0} = 1 + 0.23 \cdot c$
$v = \sqrt{\frac{K}{\rho}}$	$v_t = \frac{\Delta p}{\frac{\Delta V}{V}}$ $v_t = F \cdot \sqrt{\frac{2}{2}}$		$E \cdot d$ $E \cdot R \cdot \rho_c$	$v_p = \frac{\Delta V}{S \cdot \Delta t} \qquad v_t = \frac{l_{AB}}{\Delta t}$	
$Q = \frac{\Delta V}{\Delta t} \qquad S_1 \cdot v_1 = S_2 \cdot v_2 = const \qquad p_{S1} + \rho \cdot g \cdot h_1 + \frac{1}{2} \cdot \rho \cdot v_1^2 = p_{S2} + \rho \cdot g \cdot h_2 + \frac{1}{2} \cdot \rho \cdot v_2^2 = const.$					
$Q = \frac{\pi \cdot r^4}{8 \cdot l \cdot \eta} \cdot \Delta p$		$Q = \frac{1}{R_N} \cdot \Delta p$		$N_R = \frac{2 \cdot r \cdot v \cdot \rho}{\eta}$	
		L			
$\Delta p = \frac{2 \cdot \sigma}{R} \qquad \qquad C = \frac{\Delta V}{\Delta p}$					
F		$\Lambda r = u \cdot t$		Λν du	

