$SX = X - X_0$ $X_0 \in \langle X - \Delta X, X + \Delta X \rangle$		$\bar{T} = \frac{T_1 + T_2 + T_3 + \dots + T_n}{n}$	$s_T = \sqrt{\frac{(T_1 - \bar{T})^2 + (T_2 - \bar{T})^2 + \dots + (T_n - \bar{T})^2}{n - 1}}$	
$s_T = \frac{s_T}{\sqrt{n}} \qquad F = \frac{s_T}{\sqrt{n}}$		$= const \cdot A^a \cdot B^b \cdot C^c \cdot \dots$	$\Delta F = \pm F \cdot \left[\left a \cdot \frac{\Delta A}{A} \right + \left b \cdot \frac{\Delta B}{B} \right + \left c \cdot \frac{\Delta C}{C} \right + \dots \right]$	

$F = \eta \cdot S \cdot \frac{\Delta v}{\Delta x}$	$\eta_{w^{\frac{1}{4}}} = \frac{\eta}{\eta_0} - 1$	$[\eta] = \lim_{c \to 0} \left(\frac{\eta_{wt}}{c}\right)$	$\Delta V = \frac{\pi \cdot r^4 \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$	
$R = 6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\eta = \frac{2 \cdot r^2 \cdot g \cdot (\rho - \rho_c)}{9 \cdot v}$	$\frac{\eta}{\eta_0} = \frac{t}{t_0} \cdot \frac{\rho}{\rho_0}$	$\Phi = rac{V_c}{V_r}$	
$\frac{\eta}{\eta_0} = 1 + 2.5 \cdot \Phi$	$[\eta] = 2.5 \cdot \frac{N_A}{M} \cdot v_{cz}$	$r = \sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_A} \cdot [\eta]}$	$\frac{\rho}{\rho_0} = 1 + 0.23 \cdot c$	

$W = \sigma \cdot \Delta S$	$\sigma = \frac{F}{l}$	$\Delta p = \frac{2 \cdot \sigma}{R}$	$\frac{\sigma}{\sigma_0} = \frac{n_0 \cdot \rho}{n \cdot \rho_0}$	$\sigma = \frac{r \cdot h \cdot \rho \cdot g}{2 \cdot \cos(\alpha)}$	$\sigma = \frac{\rho \cdot V \cdot g}{2 \cdot \pi \cdot r \cdot n}$
-----------------------------	------------------------	---------------------------------------	---	--	---

$\frac{\mathrm{d}n}{\mathrm{d}t} = -D \cdot S \cdot \frac{\mathrm{d}c}{\mathrm{d}x}$	$D = \frac{k \cdot T}{6 \cdot \pi \cdot r \cdot \eta}$	$\overline{\Delta x^2} = 2 \cdot D \cdot t$	$P = \frac{D}{\mathrm{d}x}$
$\frac{\mathrm{d}n}{\mathrm{d}t} = P \cdot S \cdot (c_1 - c_2)$	$c_2 = \frac{c_0}{2} \cdot (1 - e^{-C \cdot D \cdot t})$	$C = \frac{2 \cdot A}{V \cdot \mathrm{d}x}$	$\ln \left(\frac{c_0}{c_0 - 2 \cdot c_2} \right) = C \cdot D \cdot t$

$E = E_{el} + E_{osc} + E_{rot}$	$h \cdot v = E_2 - E_1 = \Delta E_{el} + \Delta E_{osc}$	$+\Delta E_{rot}$	$P = P_0 \cdot e^{-k \cdot d}$	$k = a_{\lambda} \cdot c$
$P = P_0 \cdot e^{-a_{\lambda} \cdot c \cdot d}$	$\tau = \frac{P}{P_0}$		$\tau = \mathrm{e}^{-a_{\lambda} \cdot c \cdot d}$	$A = -\log(\tau)$
A	$\varepsilon_{\lambda} = a_{\lambda} \cdot \log(e)$			

$$J = \frac{I}{S} \qquad \qquad J \cdot \Delta t = \frac{I \cdot \Delta t}{S} = \frac{\Delta Q}{S} \qquad \qquad I_p = (CH \cdot R) \cdot \frac{1}{\Delta t} + R$$